Lịch sử Số học

Lịch sử thời tiền sử của số học chỉ giới hạn ở một số lượng nhỏ các hiện vật, có thể chỉ ra quan niệm về phép cộng và phép trừ, nổi tiếng nhất là xương Ishangotrung tâm châu Phi, có niên đại từ 20.000 đến 18.000 TCN, mặc dù cách giải thích của nó bị tranh cãi.[6]

Các bản ghi chép sớm nhất cho thấy người Ai Cậpngười Babylon đã sử dụng tất cả các phép toán số học cơ bản ngay từ năm 2000 TCN. Những hiện vật này không phải lúc nào cũng tiết lộ quy trình cụ thể được sử dụng để giải quyết vấn đề, nhưng các đặc điểm của hệ đếm cụ thể ảnh hưởng mạnh mẽ đến độ phức tạp của phương pháp. Hệ thống chữ tượng hình cho các chữ số Ai Cập, giống như các chữ số La Mã sau này, bắt nguồn từ các dấu kiểm đếm được sử dụng để đếm. Trong cả hai trường hợp, nguồn gốc này dẫn đến các giá trị sử dụng cơ số thập phân, nhưng không bao gồm ký hiệu vị trí. Các phép tính phức tạp với chữ số La Mã cần sự hỗ trợ của bảng đếm (hoặc bàn tính La Mã) để có được kết quả.

Các hệ đếm đầu tiên bao gồm ký hiệu vị trí nhưng không phải là hệ thập phân, bao gồm các hệ cơ số 60 của hệ thống chữ số Babylon và hệ cơ số 20 của hệ thống chữ số Maya. Bởi vì các khái niệm sử dụng chữ số này, khả năng sử dụng lại các chữ số tương tự cho các hệ đếm khác nhau đóng góp một phương pháp đơn giản và hiệu quả hơn trong tính toán.

Sự phát triển lịch sử liên tục của số học hiện đại bắt đầu từ nền văn minh Hy Lạp cổ đại của Hy Lạp cổ đại, mặc dù nó có nguồn gốc muộn hơn nhiều so với các ví dụ của người Babylon và Ai Cập. Trước tác phẩm của Euclid vào khoảng năm 300   Trước Công nguyên, các nghiên cứu về toán học của người Hy Lạp bị chồng chéo với các niềm tin triết học và thần bí. Ví dụ, Nicomachus tóm tắt quan điểm của phương pháp tiếp cận Pythagore trước đó đối với các con số, và mối quan hệ của chúng với nhau, trong phần Nhập môn Số học của ông.

Các chữ số Hy Lạp đã được Archimedes, Diophantus và những người khác sử dụng trong một ký hiệu vị trí không khác lắm so với ký hiệu hiện đại. Người Hy Lạp cổ đại thiếu ký hiệu cho số 0 cho đến thời kỳ Hy Lạp hóa, và họ sử dụng ba bộ ký hiệu riêng biệt làm chữ số: một bộ cho hàng đơn vị, một bộ cho hàng chục và một bộ cho hàng trăm. Đối với hàng nghìn địa điểm, họ sẽ sử dụng lại các biểu tượng cho đơn vị địa điểm, v.v. Thuật toán cộng của họ giống hệt với phương pháp hiện đại và thuật toán nhân của chúng chỉ khác một chút. Thuật toán chia dài của họ giống nhau và thuật toán căn bậc hai từng chữ số, được sử dụng phổ biến gần đây vào thế kỷ 20, được biết đến bởi Archimedes (người có thể đã phát minh ra nó). Ông thích nó hơn phương pháp tính gần đúng liên tiếp của Hero bởi vì, một khi được tính toán, một chữ số không thay đổi và căn bậc hai của các bình phương hoàn hảo, chẳng hạn như 7485696, kết thúc ngay lập tức là 2736. Đối với các số có phần thập phân, chẳng hạn như 546,934, người ta sử dụng lũy thừa âm của 60 — thay vì lũy thừa âm của 10 cho phần lẻ 0,934.[7]

Người Trung Quốc cổ đại đã nghiên cứu số học nâng cao từ thời nhà Thương và tiếp tục đến thời nhà Đường, từ các con số cơ bản đến đại số nâng cao. Người Trung Quốc cổ đại sử dụng ký hiệu vị trí tương tự như ký hiệu của người Hy Lạp. Vì chúng cũng thiếu ký hiệu cho số 0, chúng có một bộ ký hiệu cho vị trí đơn vị và bộ thứ hai cho vị trí hàng chục. Đối với hàng trăm địa điểm, sau đó họ sử dụng lại các biểu tượng cho địa điểm đơn vị, v.v. Biểu tượng của họ dựa trên các que đếm cổ đại. Thời gian chính xác mà người Trung Quốc bắt đầu tính toán với đại diện vị trí là không xác định, mặc dù người ta biết rằng việc áp dụng bắt đầu trước năm 400   BC.[8] Người Trung Quốc cổ đại là những người đầu tiên khám phá, hiểu và áp dụng các số âm một cách có ý nghĩa. Điều này được giải thích trong Cửu chương toán thuật (Jiuzhang Suanshu), được Lưu Huy viết vào thế kỷ thứ 2 TCN.

Stepped reckoner của Leibniz là chiếc máy tính đầu tiên cố thể thực hiện tất cả bốn phép tính số học.

Sự phát triển dần dần của hệ thống chữ số Hindu – Ả Rập đã độc lập ra khái niệm giá trị vị trí và ký hiệu vị trí, kết hợp các phương pháp đơn giản hơn để tính toán với cơ số thập phân và việc sử dụng một chữ số đại diện cho số 0. Điều này cho phép hệ thống biểu diễn nhất quán cả số nguyên lớn và nhỏ - một cách tiếp cận cuối cùng đã thay thế tất cả các hệ thống khác. Vào đầu thế kỷ thứ 6, nhà toán học Ấn Độ Aryabhata đã kết hợp một phiên bản hiện có của hệ thống này trong công trình của mình và thử nghiệm với các ký hiệu khác nhau. Trong ngày 7   thế kỷ, Brahmagupta thiết lập việc sử dụng   0 như một số riêng biệt và xác định kết quả của phép nhân, chia, cộng và trừ số 0 và tất cả các số khác — ngoại trừ kết quả của phép chia cho số không. Người cùng thời với ông, giám mục Syriac Severus Sebokht (650) cho biết, “Người Ấn Độ sở hữu một phương pháp tính toán mà không từ ngữ nào có thể khen ngợi đủ. Hệ thống toán học hợp lý của họ, hoặc phương pháp tính toán của họ. Ý tôi là hệ thống sử dụng chín biểu tượng. " [9] Người Ả Rập cũng đã học phương pháp mới này và gọi nó là hesab.

Mặc dù Codex Vigilanus mô tả một dạng ban đầu của chữ số Ả Rập (bỏ qua số 0) vào năm 976, Leonardo thành Pisa (Fibonacci) chịu trách nhiệm chính trong việc phổ biến việc sử dụng chúng trên khắp châu Âu sau khi xuất bản cuốn sách Liber Abaci vào năm 1202. Ông viết, “Phương pháp của người Ấn Độ (Latin Modus Indoram) vượt trội hơn bất kỳ phương pháp tính toán nào đã biết. Đó là một phương pháp kỳ diệu. Họ thực hiện các phép tính của mình bằng cách sử dụng chín hình và ký hiệu số không ".[10]

Vào thời Trung Cổ, số học là một trong bảy môn nghệ thuật tự do được dạy trong các trường đại học.

Sự phát triển rực rỡ của đại số trong thế giới Hồi giáo thời trung cổ, và cả ở châu Âu thời Phục hưng, là một sự phát triển vượt bậc của sự đơn giản hóa to lớn của phép tính thông qua ký hiệu thập phân.

Nhiều loại công cụ khác nhau đã được phát minh và sử dụng rộng rãi để hỗ trợ tính toán số. Trước thời Phục hưng, chúng là nhiều loại abaci khác nhau. Các ví dụ gần đây hơn bao gồm các quy tắc trang trình bày, biểu đồmáy tính cơ học, chẳng hạn như máy tính Pascal. Hiện tại, chúng đã được thay thế bằng máy tính điện tử và máy tính.

Tài liệu tham khảo

WikiPedia: Số học http://www.britannica.com/eb/article-4153/Leonardo... http://www.scienceclarified.com/Ma-Mu/Mathematics.... http://mathworld.wolfram.com/Arithmetic.html http://www.spasslernen.de/geschichte/buch/index.ht... http://d-nb.info/gnd/4002919-0 http://id.ndl.go.jp/auth/ndlna/00570203 http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ http://www-history.mcs.st-andrews.ac.uk/Biographie... http://www.lloffion.org.uk/docs/walkingames_arithm... https://mathvault.ca/hub/higher-math/math-symbols/...